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ABSTRACT 
 
This study determined the degree to which keystroke performance results obtainable on mobile 
devices exceed those obtainable on hardware keyboards.  The biometric equal error rates on three 
sets of smartphone touchscreen data – the keystroke timing data similar to that available on hardware 
keyboards, the non-timing touchscreen data not available on hardware keyboards, and all the 
touchscreen data combined – were 10.5%, 3.5%, 2.8%, respectively.   These results show that 
considerably greater biometric value is available from smartphone touchscreen data compared to 
that from hardware keyboards. 

 

Keywords: Biometrics, Keystroke Dynamics, Machine Learning, Mobile Devices, User 
Authentication. 
 

1. INTRODUCTION 
 
Because passwords for computer and account access, and passcodes for building and ATM access, 
can be easily compromised, the addition of biometric user-identity information could help reduce 
these security threats.  The touchscreen sensors of mobile devices provide considerably richer data 
than that available from personal computer hardware keyboards, and this study explores the keystroke 
biometric performance achievable from the richer touchscreen data compared to that available from 
hardware keyboards.   
 
Keystroke biometric systems measure typing characteristics believed to be unique to an individual and 
difficult to duplicate.  The keystroke biometric is one of the less-studied behavioral biometrics, 
usually relegated to conference sessions on “other biometrics” and described only briefly in books on 
biometrics.  Nevertheless, the keystroke biometric has been reviewed in several recent articles [1, 2].  
Most of the studies on keystroke dynamics have used data captured from hardware keyboards of 
personal computers, and there are currently a number of commercial products, primarily for password 
strengthening (also called password “hardening”) [3]. 
 

Recent keystroke dynamic studies have focused on data captured on touchscreen virtual keyboards.  
Table 1 summarizes six keystroke studies on touchscreen data of mobile devices.  The touchscreen 
sensor data typically includes:  
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 keystroke timing: key-down/key-up times also available on hardware keyboards 
 pressure: the finger pressure used on a soft key 
 location: x-y coordinates of the position of the finger touching a soft key 
 size/orientation: length and orientation of major and minor axes of finger-press area   

 

When references undertook several studies, only the most relevant ones are listed in the table.  The 
most common performance metric used when comparing biometric systems is the Equal Error Rate 
(EER) where the False Accept Rate (FAR) is equal to the False Reject Rate (FRR). 
 

Table 1. Summary of Previous Mobile-Device, Touch Screen Studies. 

 
 

Buchoux and Clarke [4] obtained a FRR of 15% and a FAR of 57.5% on 20 users entering a 4-digit PIN.  
Fleming [5] successfully identified users entering long (about 200 words) fixed and free-form text 70% 
of the time on 10 users.  Gascon et al. [6] tasked over 300 participants to enter short text sentences into a 
mobile phone, obtaining a True Positive Rate (TPR) of 92% with a corresponding False Positive Rate 
(FPR) of only 1%.  Kambourakis et al. [7] augmented traditional keystroke biometric data with the 
additional features of distance covered (in pixels) between two successively pressed keys, and speed 
calculated as the distance divided by the time between successive key presses.  The incorporation of 
these additional features led them to achieve an EER of 26% on a ten-digit passcode and an EER of 13.6 
on short passphrase input.  Trojahn and Ortmeier [8] used key-press pressure and key-press area size in 
addition to keystroke timing to achieve FAR=9.0 and FRR=6.7% on a 12-key layout.  Zheng et al. [9] 
focused their research on exploiting four features easily extracted from today’s smartphones – keystroke 
timing, pressure of key-press, size/orientation of finger-press area, and acceleration – to achieve the 
Table’s best EER’s of 3.65% on data from 53 users. 
 

Other recent studies focused primarily on data captured from the accelerometer and gyroscope 
sensors.  For example, Giuffrida et al. [10] employed text passwords (the words “internet” and 
“satellite”) with data captured from the accelerometer and gyroscope sensors to achieve high 
performance using research staff members as participants in a highly-controlled environment.  This 
research suggests that data captured from the accelerometer and gyroscope sensors on mobile devices 
can essentially replace the traditional keystroke-timing data to authenticate users with considerably 
higher accuracy than that obtainable using traditional keystroke analytics.   
 

The current study employed a common-to-all-user, 10-digit passcode input on the keypad of a mobile 
phone.  The passcode was similar to that used in two earlier studies on hardware keyboards [11, 12] 
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and references to related keystroke studies on numeric data can be found in those papers.  This study 
differed from the earlier studies on touchscreen data (Table 1) because it directly compared the 
performance obtained from the richer touchscreen data to that obtainable from hardware keyboards.  
This was achieved by measuring system performance on three sets of features derived from the 
following data: 
 

1. Keystroke timing data also available from hardware keyboards 
2. Non-timing touchscreen data not available from hardware keyboards  
3. All the touchscreen data (sets 1 and 2 combined) 

 

In addition to touchscreen sensors, smartphones usually have other sensors, such as accelerometers 
and gyroscopes that typically capture data periodically along the x, y, and z axes.  These non-
touchscreen sensors were not used in this study. 
 

The remaining sections of the paper present the methodology, the experimental results, the discussion, 
and the conclusions.  
 

2.  METHODOLOGY 
 

This section describes the methodologies employed in this study: choice of passcode, data capture, 
feature extraction, and authentication classification. 
 

2.1 Choice of Passcode 
 

A single 10-digit passcode was employed in the study.  Although longer than the average passcode, 
this length was chosen to provide reasonable discrimination among the participants while not being 
too tedious to type repetitively, as in earlier studies [11, 12].  The same passcode was used by all the 
participants primarily for experimental purposes to allow each participant to be treated as a “zero-
effort” imposter for the other participants.  The passcode number chosen was 914 193 7761 because 
914 is the local area telephone code and because the sequence spans the keypad. 
 

2.2 Data Capture 
 
A soft keyboard application was developed for the Android platform to collect data from participants. 
The custom input method editor (IME) replaces the system keyboard, and can capture keystrokes in 
any application that uses a keyboard. Key press and release events were stored in a SQLite database 
and transmitted to a server to centralize all of the data collected. 
 
Events are generated when a user presses are releases a button on the soft keyboard. Each event 
contains the action (press or release), timestamp, screen coordinates, and pressure. Additional sensors 
on the devices such as gyroscopic and rotational sensors, are ignored in this study, as many 
touchscreen devices (e.g. ATM or self-checkout registers) do not contain these types of sensors. 
Captured events strictly alternate between press and release actions, since the software used to capture 
data did not support multiple-touch gestures. Timestamps were captured in millisecond precision, 
although the actual precision of the device depends on the hardware clock and is not known.  The 
pressure is usually in the range from 0 to 1, where 1 indicates a “normal” pressure and also depends 
on the calibration of the device [13].  Screen coordinates are in the range of the screen resolution, and 
need not be normalized since data collection was performed using identical devices.  
 

The numeric keypad data were collected from 30 subjects over several days with 15-30 samples 
collected per subject per day.  Each participant first practiced keying the input string several times 
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before the samples were recorded. Each sample consisted of the numeric sequence 914 193 7761 
(shown here in telephone number format) followed by the Enter key to provide a total of 11 
keystrokes per sample.  The samples were entered on the phone’s numeric keypad as if entering a 
phone number or entering an ATM pin. Data collection was performed on 5 identical LG-D820 Nexus 
5 devices, which have 4.95 inch touch screens with a resolution of 1080x1920 pixels. Only samples 
that were entered correctly, i.e. exactly 11 keystrokes in the correct order, are considered. Samples 
that include deletions or incorrect entries are omitted. 
 

2.3 Feature Extraction 
 

Three sets of features are defined in order to determine the effect of touchscreen biometrics in 
addition to the well studied keystroke biometrics. The three feature sets include: timing features, 
touchscreen features, and both timing and touchscreen features combined.  Timing feature extraction 
is performed similarly to that described in [11]. The duration of each soft keystroke, and transitions 
between press-release and release-press events are taken, for a total of 31 features. 
 

The non-timing touchscreen features are calculated similarly to the timing features.  The pressure and 
the position of screen-touch x-y coordinates are defined as touchscreen measurements, for a total of 
three measurements.  Accurate size/position data were not available on the device used in this study.  
The three measurements are sampled at each press and release event. The complete touchscreen 
feature set is composed of touchscreen measurements at each press and release event (3x22=66), the 
difference of each measurement between press and release events for each key (3x11=33), and the 
difference of each measurement between press-release and release-press transitions (3x10x2=60). 
Thus, there are a total of 159 touch features. 
 
All features were normalized into the range 0-1 by clamping each feature at +/- 2 standard deviations.  
 

2.4 Authentication Classification 
 

Authentication classification was performed by a “one-class” Support Vector Machine (SVM) as 
described by Yu and Cho [14] and employed in a study by Killourhy and Maxion [15].  This 
algorithm creates a one-class SVM linear separator in a high-dimensional space from the training 
vectors.  During testing, a test vector is projected into the same high-dimensional space, the signed 
distance from the linear separator calculated, and this distance with the sign inverted is used as the 
classification score. 
 

3   EXPERIMENTAL RESULTS 
 
The SVM classification system was used to measure system performance on three sets of features 
derived from: 
 

1. Keystroke timing data also available from hardware keyboards 
2. Non-timing touchscreen data not available from hardware keyboards  
3. All the touchscreen data (sets 1 and 2 combined) 

 

The results are shown in Table 2. 
 

Table 2. EER for the Three Experimental Conditions 
Keystroke Timing Data Non-timing Touchscreen Data All Touchscreen Data 

10.5% 3.5% 2.8% 
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4   CONCLUSIONS 
 

The main contributions of this study were to quantify the degree to which the keystroke performance 
results obtainable on mobile devices exceed those obtainable on hardware keyboards.  The EER of 
10.5% obtained here on the keystroke timing data from the smartphone touchscreen is comparable to 
that obtained on hardware keyboard studies [11, 12] as was anticipated.  The EER of 3.5% on the non-
timing touchscreen data indicates that the touchscreen data not available on hardware keyboards has 
greater biometric value than that available on hardware keyboards.  Finally, the EER of 2.8% on all 
the touchscreen data employed in the study demonstrates that touchscreen data has considerably 
greater biometric value than that available on hardware keyboards.  Future work could incorporate the 
additional data available from the accelerometer and gyroscope sensors which should further separate 
the biometric performances of systems based on data available on smartphone touchscreens relative to 
that available on hardware keyboards. 
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